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1 Executive Summary
The project is motivated by the challenges, risks, and costs associated with geothermal exploration and
production. Many processes and parameters impacting geothermal conditions are poorly understood.
Diverse datasets are available to help characterize subsurface geothermal conditions (public and
proprietary; satellite, airborne surveys, vegetation/water sampling, geological, geophysical, etc.). Yet, it is
not clear how to properly leverage these datasets for geothermal exploration due to an incomplete
understanding of how physical processes impacting subsurface geothermal conditions are represented in
these observations. Recent advancements in machine learning (ML) provide great promise to resolve
these issues.

The tremendous challenges and risks of geothermal exploration and production bring the demand
for novel ML methods and tools that can (1) analyze large field datasets, (2) assimilate model simulations
(large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning (between sites with
different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation data, (6)
label geothermal resources and processes, (7) identify high-value data acquisition targets, and (8) guide
geothermal exploration and production by selecting optimal exploration, production, and drilling
strategies. Our goals and work under Phases 1 and 2 (as proposed) of this project address all these needs.

Under Phase 1, we have developed and applied our novel LANL-developed machine learning
(ML) methodology to discover and extract new (unknown/hidden) geothermal signatures present in
existing site, synthetic, and regional datasets. Our ML analyses also identified high-value data acquisition
strategies that can reduce geothermal exploration/production costs and risks. Our ML methods also
categorized geothermal data, which is applied to generate geothermal data labels (e.g., geothermal
resource types). The end product of our effort is the development of a flexible open-source cloud-based
ML framework for geothermal exploration, called GeoThermalCloud, which can fuse existing
geothermal datasets and multi-physics models. GeoThermalCloud will also allow for the treatment of
both public and proprietary datasets. This is an essential feature considering the high sensitivities
associated with the use of proprietary data. Processing simultaneously public and proprietary datasets will
significantly increase the quality and applicability of the obtained ML results. Moreover,
GeoThermalCloud framework includes a series of advanced pre-processing, post-processing, and
visualization tools which tremendously simplify its application for real-world problems. These tools make
the ML results understandable and visible even for non-experts. ML and subject-matter expertise are not a
critical requirement to use our GeoThermalCloud framework.

ML methods embedded in the GeoThermalCloud have been extensively tested and validated. In
this report, as well as in a series of presentations and submitted research papers, we have demonstrated
that GeoThermalCloud can be applied to discover hidden geothermal signatures for a series of diverse
datasets and regions. The analyzed ML problems are (results for all sites are available in our project
presentation):
● Southwest New Mexico (SWNM): Identified low- and medium-temperature hydrothermal systems;

found dominant attributes and spatial distribution of extracted hidden hydrothermal signatures;
demonstrated blind predictions of the regional physiographic provinces1–3.

● Great Basin: Extracted hidden geothermal signatures associated with low-, medium-,
high-temperature hydrothermal systems, their dominant characterization attributes, and spatial
distribution within the study area4,5. The analyses are based on the public data available at the Nevada
Bureau of Mines and Geology website
[http://www.nbmg.unr.edu/Geothermal/GeochemDatabase.html].

● Brady site, Nevada: Successfully defined relations between well types (production, injection,
non-production) and attributes characterizing site conditions (faulting, geology, in situ state of
stress)6.

● West Texas: Subdivided the region into three areas; the western portion has higher geothermal
potential at a lower depth than the middle and eastern portions.
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● Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120 locations 7;
data comes from past PFA work in this region8. ML analyses identified geothermal signatures
associated with low-, medium-, and high-temperature hydrothermal systems. Dominant attributes and
spatial distribution of the geothermal signatures are also defined.

● Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations9. Successfully
defined geothermal signatures associated with low- and medium-temperature hydrothermal systems,
their dominant attributes, and spatial distribution.

● Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-, and
high-temperature hydrothermal systems and their dominant characterization attributes10.

● Utah FORGE: Performed prospectivity analysis to identify future drilling locations using geological,
geochemical, and geophysical attributes11. Maps of temperature at depth, and heat flow constructed
based on the available data. Processed data includes satellite (InSAR), geophysical (gravity, seismic),
geochemical, and geothermal attributes.  Prospectivity maps generated and drilling locations proposed
for future geothermal field exploration.

● EGS Collab: Field experiment data processed to extract dominant temporal patterns observed in 49
data streams; erroneous measurement attributes and periods automatically identified; interrelated data
streams automatically identified.

In addition, two synthetic datasets were generated to (1) validate our ML methods, (2)
demonstrate how our ML tools can fuse model outputs in the geothermal analyses, (3) identify high-value
data acquisition and reservoir production strategies, and (4) estimate exploration/production costs and
risks.

The first synthetic dataset was generated utilizing GeoDT, a novel LANL-developed
multi-physics code for prediction of the performance of geothermal energy systems. GeoDT evaluates
how geothermal site data conditions impact design decisions related to construction of enhanced
geothermal systems (EGS). GeoDT is applied to evaluate the combined effect of >90 input parameters on
thermal power and electrical power output based on >2000 random realizations; the analyses are
representative of the Utah FORGE site conditions. The model inputs and outputs are analyzed using our
GeoThermalCloud ML tools. They were able to identify key controlling attributes, separate the relative
impact of different physical processes on production, and associate these impacts to GeoDT model inputs.
Our study focused on the influence of stress state and natural fractures on geothermal well drilling and
well production. ML analyses identified well spacing and well orientation as critical parameters for
energy production.

The second synthetic dataset represented the SWNM geothermal conditions and was generated
using the LANL-developed simulator PFLOTRAN. PFLOTRAN simulations were executed to create a
large synthetic dataset exploring existing uncertainty in the geothermal conditions. The dataset is
designed to explore how geothermal reservoir attributes such as temperature and heat flow inform
observables near the ground surface, such as tracer element concentrations. Using our ML tools, this
dataset is analyzed to understand interdependencies between model input and outputs. We also developed
an ML model capable of performing fast prediction and uncertainty quantification of underground
geothermal conditions.

These two synthetic-data analysis efforts demonstrate how our ML methods can be applied in
tandem with forward-looking multi-physics models to address questions related to value-added data
acquisition strategies and to reduce exploration and development costs. These synthetic analyses also
validate our novel ML methodology.

For the Brady and Utah FORGE sites, our ML characterization particularly focused on impact
in-situ stress on geothermal production.

All the data and codes required to reproduce the ML results for SWNM, Brady, and Great Basin
studies presented in this report are available at the GDR (https://gdr.openei.org/submissions/1297) and at
the GeoThermalCloud GitHub repository (https://github.com/SmartTensors/GeoThermalCloud.jl). The
data and the codes for other problem analyses performed under this project will be available shortly on the
website as well.
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ML tools in GeoThermalCloud are based on a series of novel LANL-developed patented ML
tools called SmartTensors (https://github.com/SmartTensors). SmartTensors have already been applied to
solve a wide range of real-world problems (from COVID-1912 to wildfires; http://tensors.lanl.gov).
SmartTensors has been recently nominated for an R&D 100 award.

GeoThermalCloud and SmartTensors are written in Julia: a novel, fast programming language
specifically designed for technical computing and machine learning (https://julialang.org). Julia is two
orders of magnitude faster than Python, R, and MATLAB. It provides computational speed equivalent to
C and FORTRAN. Moreover, it is a scripting language that is as easy to use as Python, R, and MATLAB.
Julia can be applied to develop Jupyter and Pluto notebooks. (Pluto is a novel reactive Julia-centric
notebook framework; https://github.com/fonsp/Pluto.jl). Julia is also scalable and can be executed without
any code changes on handhelds, laptops, supercomputers, and cloud computing platforms. Julia
programming language is actively used in numerous fields, including financing, oil/gas production,
climate modeling, and pharmaceutical research. We have active collaborations with developers of the
Julia language. We will involve Julia Computing as a collaborator in the proposed Phase 2 of our project.

GeoThermalCloud, as well as our SmartTensors ML tools in general, are designed to be
computationally efficient and scalable. Our ML analyses can be executed to diverse computational
platforms: from handhelds and laptops to supercomputers and cloud frameworks. The ML tools are
designed to automatically and efficiently utilize available hardware accelerators such as GPUs (Graphics
Processing Units) and TPUs (Tensor Processing Units) and diverse computing platforms involving a large
number of compute nodes. SmartTensors framework has already been demonstrated to process tens of
terabytes (TBs) of data using DOE supercomputers.

Our project is a collaborative effort that includes researchers from LANL, Stanford, Google Inc,
Descartes Labs Inc, and the University of Texas-Austin (Bureau of Economic Geology).

Our Phase 1 completion report summarizes our efforts under this project. All the project goals,
milestones, deliverables, and go/no-go decision points outlined in the original Phase 1 proposal have been
successfully achieved. No changes have been made in the originally proposed work, milestones, tasks,
and go/no-go decisions.
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2 GeoThermalCloud

2.1 Goals
The main project goal is to apply machine learning (ML) to discover and extract new (unknown/hidden)
geothermal signatures present in existing synthetic, site, and regional datasets. Our ML analyses also aim
to identify high-value data acquisition strategies that can reduce geothermal exploration/production costs
and risks. Our ML methods also provide categorization of geothermal data, which is applied to generate
geothermal data labels. In summary, our project goals are summarized as follows:
1. Apply ML to discover and extract new (unknown/hidden) geothermal signatures in existing large

datasets
2. Categorize geothermal data and generate labels
3. Identify high-value data acquisition strategies
4. Develop a general open-source cloud-based ML framework for geothermal exploration
5. Fuse big data and multi-physics models
6. Test & validate that ML methods can discover hidden geothermal signatures
Within Phase 1, we have achieved all these goals. In addition, we have identified the following go/no-go
decision criteria: (1) extraction of new geothermal signatures, (2) generation of labeled datasets, (3)
construction of subsurface heat and geothermal prospectivity maps, and (4) identification of high-value
data acquisition targets via ML analysis. As demonstrated by our analyses presented in Section 3, we have
achieved these go/no-go decision points as well.

2.2 Design
The end product of our project is to develop a flexible open-source cloud-based ML framework for
geothermal exploration, called GeoThermalCloud, which can fuse existing geothermal datasets and
multi-physics models. GeoThermalCloud will allow for the treatment of both public and proprietary
datasets. This is an essential feature considering the high sensitivities associated with the use of
proprietary data. Interpreting simultaneously public and proprietary datasets will increase the quality and
applicability of the obtained ML results tremendously. GeoThermalCloud framework also includes a
series of advanced pre-processing, post-processing, and visualization tools which tremendously simplify
its application for real-world problems. These tools make the ML results understandable and visible even
for non-experts. ML and subject-matter expertise are not a critical requirement to use our ML framework.

ML methods embedded in the GeoThermalCloud have been extensively tested and validated.
This report demonstrates how GeoThermalCloud can be applied to discover hidden geothermal
signatures for a series of diverse datasets and regions within the U.S. GeoThermalCloud is open-source
and available at GDR (https://gdr.openei.org/submissions/1297) and GitHub
(https://github.com/SmartTensors/GeoThermalCloud.jl). The GitHub repository is up-to-date because it is
used by our team to facilitate our collaborative coding effort; the GDR repository is regularly updated as
well. The data and scripts, including Jupyter and Pluto notebooks, required to reproduce the ML results
discussed here are also available at the GitHub and GDR repositories. Below, we present the ML
methodology applied and the obtained results.

2.3 Methodology
GeoThermalCloud utilizes our novel, open-source, LANL-developed, patented ML methods and
computational tools. All these methods are distributed as SmartTensors (http://tensors.lanl.gov,
https://github.com/SmartTensors). SmartTensors is a toolbox for unsupervised and physics-informed
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machine learning based on matrix/tensor factorization constrained by penalties enforcing robustness and
interpretability (e.g., nonnegativity; physics and mathematical constraints; etc.). SmartTensors has
already been successfully applied to analyze diverse datasets related to a wide range of problems: from
COVID-1912 to wildfires and text mining. Also, the SmartTensors framework can handle big data and has
already been demonstrated to perform tens of TBs of data using DOE supercomputers13.

The two most commonly used ML algorithms in SmartTensors are NMFk and NTFk. They
perform nonnegative matrix/tensor factorization coupled with customized k-means clustering14–16. NMFk
and NTFk are capable of identifying (i) the optimal number of hidden signatures in data, (ii) the dominant
set of attributes in data that correspond to identified hidden signatures, and (iii) locations associated with
each hidden signature.

All datasets are formed by directly observable quantities, while the underlying processes or data
signatures usually remain unseen, hidden, or latent17. These hidden signatures (or features/signals) can be
either impossible to measure directly or are simply unknown. For example, let us assume that a series of
microphones are placed in a noisy ballroom18 where many people are talking. The collected data records
the mixtures of voices, sounds, and noises. The latent signatures are the individual voices that cannot be
recorded separately but can be extracted from the collected data. Extracting latent signatures reduces the
dimensionality of the data and defines low-dimensional subspaces19,20 that represent the entire dataset.
After the extraction, the obtained information is post-processed by subject-matter experts to identify the
physical meaning (e.g., broken glass) or the origin (e.g., recognize voices of individuals) of the extracted
signatures.

Similarly, our unsupervised ML techniques have been applied here to extract latent signatures and
hidden (mixed) physical processes embedded in large, diverse geothermal datasets. Hidden (latent)
signatures provide a low-dimensional and compressed representation of the processed dataset. They can
also be viewed as basis vectors providing optimal data projection. In the case of geothermal applications,
these signatures typically represent information about a series of physical processes which occur in
observable and/or simulated datasets. These signatures can be multi-dimensional capturing processes
occurring in spatiotemporal space and captured by a set of diverse attributes. Geothermal attributes we
have processed in this report include temperature, gradients, geothermometers, conductivity, permeability,
fluxes, fracture densities, in-situ stresses, etc.

To discover hidden signatures and their optimal number in large geothermal datasets, NMFk and
NTFk are at the forefront among various unsupervised ML methods such as nonnegative matrix
factorization (NMF), principal component analysis (PCA), independent component analysis (ICA),
regular and high-order singular value decomposition (SVD/HOSVD), nonnegative tensor factorization
(NTF), and Gaussian process/mixture modeling. In contrast, with traditional NMF21, NMFk allows for
automatic identification of the optimal number of signatures (features) present in the data15. The
nonnegativity constraint makes the decomposed matrices easier to interpret than PCA, SVD, and ICA
because the extracted signatures are additive. Moreover, NMFk and NTFk can handle huge (TBs), real,
categorical, and missing data. Dealing with missing data is challenging or impossible for other supervised
and unsupervised ML methods. Even more importantly, the missing data (some or all of it) can be
reconstructed from available data using the obtained NMFk and NTFk results. Our ML methods also
provide estimates of uncertainties associated with the estimated missing data. All of these features of our
ML methods make them very well suitable for geothermal ML analyses.

ML methods, in general, can be subdivided into supervised, physics-informed, and unsupervised.
The supervised methods require attributes and corresponding labels of the analyzed data22. The labeling
should be done by subject-matter experts who can identify, for example, locations with high-,
intermediate-, and low-temperature geothermal prospectivity or specific geologic features such as fault
offsets. The supervised methods are then applied to learn geothermal prospectivity based on the available
data. However, the successful training of supervised methods requires large, continuous (without data
gaps), non-noisy (with small measurement errors) training datasets that are typically not available for
geothermal exploration. In essence, the supervised methods cannot discover something that is not already
known and provided as labels in the training dataset. The supervised methods are highly efficient to
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process large datasets and find out how the processed data can be categorized. For example, they can be
trained to recognize images of cats and dogs; however, they will not recognize horses if they have not
been trained already to identify them. Furthermore, the supervised ML methods are sensitive to noise in
the analyzed data or the so-called “adversarial examples”23 where small, undetectable for the human eye,
can fool the detection capabilities of these methods. All of these features make the application of
supervised ML methods challenging for real-world science applications24. Commonly used supervised
methods include deep neural networks25, convolutional neural networks26, recurrent neural networks27, and
random forest28.

Physics-informed ML (PIML) methods also learn from data as the supervised methods, but they
also include preconceived science knowledge through equations and models representing physics laws,
constitutive relationships, and processes. Physics information can be (1) directly embedded in the ML
framework29 or (2) added as penalties in the ML loss minimization process30. However, the
physics-informed neural networks (PINN) are problem specific and not general as the traditional
supervised deep neural networks. Therefore, the construction PINN needs subject-matter expertise related
to the analyzed problem. However, PIML analyses have better efficiency, accuracy, and robustness
compared to the traditional ML analyses. The PINN development requires computationally efficient and
general differentiable programming tools currently available only in the Julia programming language.
Under the proposed Phase 2 of our project, the GeoThermalCloud ML framework will be expanded to
incorporate PIML methods.

In contrast, the unsupervised ML techniques extract information from existing datasets without
any prior labeling or subject-matter preprocessing. The unsupervised ML is applicable to discover
unknown features and unmix mixed signals present in the processed data. Similarly, unsupervised ML
techniques have been applied here to extract latent features and hidden (mixed) physical processes
embedded in large, diverse geothermal datasets. Our novel nonnegative matrix/tensor factorization
methods coupled with customized k-means clustering14–16 (NMFk and NTFk) are unsupervised. Other
commonly used methods include SVD31, PCA32, ICA33, k-means clustering34, Gaussian process/mixture
modeling35, nonnegative matrix/tensor factorization (NMF/NTF)21. Moreover, the labeling process
required by the supervised methods discussed above can also be automated by applying unsupervised
ML22.

2.4 Nonnegative matrix/tensor factorization
Detailed descriptions of our novel NMFk and NTFk algorithms are provided in our papers15,16. Here, we
give just a high-level description of the NMFk and NTFk methodology to support the geothermal
analyses’ discussion in this report. NMFk performs matrix factorization of a data matrix, , where the𝑋

𝑚×𝑛
m rows represent here measurement locations, and the n columns are the values of the geothermal
attributes. The goal of NMFk is to find the optimal number of signatures k that describe the analyzed
dataset. This is accomplished by matrix factorization, which can be represented as using:

𝑋 ≅ 𝑊×𝐻 (1)
where is an “attribute” matrix characterizing the significance of attributes and a “location”𝑊

𝑚×𝑘
𝐻

𝑘×𝑛
matrix captures the importance of locations and their spatial association. It is important to note that all the
elements of matrices W and H are unknown. The number of signatures k is also unknown. The matrix
factorization in (1) provides an approximate representation of the data X. To solve for all the unknowns,
NMFk performs a series of matrix factorization with random initial guesses for W and H elements and for
a range of values of k; theoretically, k can range between 2 and min(m,n). For a given number of
signatures , Equation 1 is solved iteratively by minimizing the reconstruction error :𝑘 𝑂(𝑘)

𝑂(𝑘) = || 𝑋 −  𝑊×𝐻||
𝐹 (2)
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by constraining the W and H elements to be greater
or equal to zero (nonnegative), and F defines the
Frobenius norm36. Under the NMFk algorithm,
NMF is executed numerous times (typically
1,000), which generates a series of solutions for W
and H matrices for a given k value. The resulting
multiple solutions are clustered into clusters𝐻 𝑘
using a customized -means clustering15,16. The𝑘
average silhouette width based on cosine𝑆(𝑘)
norm is computed for all k clusters. This metric
measures how well the random NMF solutions are
clustered for a given value of 15,16. The values of

theoretically can vary from -1 to 1.𝑆(𝑘)
These operations are repeated for a series of k
values. The optimal number of signatures, k, is
estimated on how the reconstruction error and𝑂(𝑘)
the average silhouette width vary with the𝑆(𝑘)
increase of k. The reconstruction error decreases as
k increases. The average silhouette width behavior
is more complicated; generally declines as k𝑆(𝑘)
increases from 1 to -1. However, values𝑆(𝑘)
frequently spike up for specific k values,
indicating that these k values are potentially
optimal. In an ideal case, a given k value is
considered optimal when adding another signature
does not significantly improve the reconstruction

of X (i.e., lower ) and does not lower . In practice, a solution with greater than 0.5 and the𝑂(𝑘) 𝑆(𝑘) 𝑆(𝑘)
lowest value can be chosen as an optimal solution. The solutions with k values less than the optimal𝑂(𝑘)
value and S(k) values > 0.5 are acceptable; they provide underfitting representations of the data matrix X.
All the solutions with k values greater than the optimal value are not acceptable; they provide overfitting
representations of the data matrix X. Implementation of the NMFk algorithm and details related to the
selection of the optimal solution are further discussed here15,37.

We listed the benefits of NMFk over similar unsupervised ML tools above. Here, we will provide
a brief mathematical and graphical comparison between NMFk and PCA to show how NMFk
differentiates itself from PCA. Another data analysis method similar to NMFk is PCA32. It factorizes the
data matrix X into score (S) and principal component (P) matrices. The factorization can be represented
as::

𝑋 ≅ 𝑆𝑃 (3)

S is a diagonal matrix. As in NMF, Equation 3 is solved iteratively by minimizing the following function:

𝐿 = | |𝑋 −  𝑆𝑃| |
𝐹
 (4)

PCA searches for linear combinations in the data by projecting each data point onto an optimal set of
principal components (PCs) to obtain a low-dimensional representation of data while preserving
maximum data variation. PCs are ordered by the magnitude of data variance as captured by the S diagonal
elements.

Even though NMF and PCA are mathematically similar, the ML results obtained by both methods
are very different. As already demonstrated, the NMF and PCA can reconstruct human faces very well
(Fig.2.1.1). Both methods extracted 49 basic facial features (can also be called dictionaries, basis vectors,
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or eigenvectors; the matrices on the left)
needed to reconstruct the entire training set of
~1,000 faces (i.e., both methods performed
data dimensionality reduction from ~1,000 to
49). However, the nonnegativity constraints
provide additive, sparse, and interpretable
results where facial features such as eyes and
noses are well defined (Fig.2.1.1; W matrix;
top left). NMF face reconstruction is obtained
by adding a series of dominant features shown
as black squares in the H matrix. In contrast,
the interpretation of PCA results is
challenging. The first face (upper left corner
of matrix P) is the average face of the training
set, and the reconstruction of face X is

obtained by adding and subtracting a series of facies features (in P) based on the weights (in S; red defines
negative values or feature subtraction; black represents positive values or feature addition).

In addition to matrices, our ML methods can process multi-dimensional datasets, i.e., tensors.
Most of the geothermal data are multi-dimensional. The data indices can be space coordinates and time
for each spatiotemporal location, and there might be numerous observables coming from different data
sources (streams). Similarly, geothermal model outputs are multi-dimensional. There are a limited number
of ML methods that can process multi-dimensional datasets, and our novel nonnegative tensor
factorization method coupled with k-means clustering (NTFk) is at the forefront. The factorization
process converts a data tensor (labeled as X in Fig.2.1.2) into a smaller core tensor (labeled as G in
Fig.2.1.2) and three matrix factors for each dimension (labeled as H, W, and V in Fig.2.1.2). Matrix
factors represent signatures in different dimensions. In the example presented in Fig.2.1.2, H, W and V
contain 5, 4, and 3 signatures, respectively. G defines how these signatures occurring in different
dimensions are mixed to reproduce the original data tensor. The tensor factorization is again achieved
through solving a minimization problem15,37. The estimation of the optimal number of signatures in each
dimension is performed using customized k-means clustering15,37.

2.5 Tests and Examples
All our codes and scripts are subject to unit testing and validation. The testing and validation of our codes
are performed automatically using existing tools developed in Julia and automated GitHub workflows.
The documentation of the functions in our codes is also automatically generated. All the information
about the tests and examples (including Jupyter and Pluto notebooks) demonstrating our ML methods are
available (GitHub: https://github.com/SmartTensors; GDR: https://gdr.openei.org/submissions/1297).

3 GeoThermalCloud Analyses
Here, we demonstrate the application of GeoThermalCloud to a series of problems involving synthetic,
site, and regional datasets. This report focuses on (1) Southwest New Mexico (SWNM), (2) Great Basin,
and (3) Brady site analyses. This work is discussed in this section. However, ML analysis also performed
under this project include interpretations of the following datasets:
● West Texas: Subdivided the region into three areas; the western portion has higher geothermal

potential at a lower depth than the middle and eastern portions.
● Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120 locations.

Data comes from past PFA work in this region8. ML analyses identified geothermal signatures
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associated with low-, medium-, and high-temperature hydrothermal systems. Dominant attributes
and spatial distribution of the geothermal signatures are also defined7.

● Tohatchi Springs: ML analyses applied on 19 attributes at 42 locations in the study area.
Successfully defined geothermal signatures associated with low- and medium-temperature
hydrothermal systems, their dominant attributes, and spatial distribution9.

● Hawaii: Analyzed four islands’ data separately and identified low-, medium-, and high-temperature
hydrothermal systems and their dominant characterization attributes10.

● Utah FORGE: Prospectivity analysis has been performed to identify future drilling locations using
geological, geochemical, and geophysical attributes38. Maps of temperature at depth and heat flow
constructed based on the available data. Processed data includes satellite (InSAR), geophysical
(gravity, seismic), geochemical, and geothermal attributes. Prospectivity maps generated and drilling
locations proposed for future geothermal field exploration.

● EGS Collab: Field experiment data processed to extract dominant temporal patterns observed in 49
data streams; erroneous measurement attributes and periods automatically identified; interrelated
data streams automatically identified.

These analyses and obtained results are available in our project presentation. They will also be discussed
in upcoming conference presentations.

This report section also presents ML analyses of synthetic datasets relevant to (1) UtahForge and
(2) SWNM sites. The first dataset was generated utilizing GeoDT, a multi-physics code for rapid
prediction of the performance of geothermal energy systems, dependent on design decisions and site data
uncertainty. The ML tools from our GeoThermalCloud were applied to identify key controlling attributes,
separate the relative impact of different physical processes on production, and associate these simulated
impacts to the model inputs. For the SWNM study, we executed PFLOTRAN simulations to generate a
large synthetic dataset designed to predict the geothermal reservoir attributes such as temperature and heat
flow based on observables near the ground surface, such as tracer element concentrations. This dataset is
currently applied to perform ML analysis to develop an ML model, which will perform fast prediction and
uncertainty quantification of underground geothermal conditions.

3.1 Southwest New Mexico
A geothermal dataset of Southwest New Mexico (SWNM) is processed using GeoThermalCloud.
SWNM is broadly divided into four physiographic provinces: the Colorado Plateau, the Mogollon-Datil
Volcanic Field (MDVF), the Basin and Range, and the Rio Grande Rift39,40,97. Each physiographic
province is associated with different types of unique hydrothermal systems with temperatures ranging
from low (<90℃) to medium (90-150℃)1,2,40,41. Some of the SWNM systems are already utilized for
commercial and recreational purposes. At 23 locations, energy-extraction facilities are providing both
electricity and direct-use heating. For example, the Basin and Range province has one geothermal power
plant (Lightning dock) of gross ~14 MWe power, five greenhouse farms42, and numerous medium
temperature wells and springs. There are 14 spas and recreational facilities utilizing the SWNM
geothermal resources42. Recent Play Fairway Analysis (PFA) study of SWNM revealed more potential
geothermal resources8,41,43. The dataset analyzed in this report comes from this past PFA work. It includes
two geochemical, two geophysical, five geological, four hydrogeological, and four geothermal attributes
(total 18) at 44 locations in SWNM (Fig.3.1.1). One of the attributes is the reservoir temperature estimates
based on silica geothermometry39,41. Boron39,41 and lithium39,41 are tracer elements in thermal water.
Drainage density39,41, spring density44, hydraulic gradient39,41, and precipitation39,41 are hydrogeological
attributes. Gravity anomaly39,41, magnetic intensity39,41, and seismicity39,41 are geophysical attributes. Silica
geothermometer29 temperature and heat flow39,41 are geothermal attributes. Silica geothermometer
indicates potential reservoir temperature, and heat flow is a proxy of the thermal gradient of the reservoir.
Geological attributes include crustal thickness45, depth to the basement46, fault intersection density40,
quaternary fault density40, state map fault density47, volcanic dike density44, and volcanic vent density48.
The data are preprocessed before the ML analyses. The boron and lithium concentration values are
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log-transformed. The attribute values at each location are
shown in Table 3.3.1. Next, all attributes are rescaled
within the range of 0.0 to 1.0 using unit range
transformation. To apply NMFk, we create an 18⨉44
matrix ( ) where the m = 18 rows represent attributes,𝑋

𝑚×𝑛
and the n = 44 columns are the values of the measured
locations.

It is important to note that on purpose, the
analyses did not include labeling of the hydrothermal
systems based on their type and their association with
physiographic provinces. Our ML analyses were also
performed without providing information about the
coordinates of the analyzed locations. In this way, we
tested if the algorithm can blindly group the locations
based on their type and province association based only
on the observed geothermal attributes.

The NMFk analysis revealed 5 hidden
geothermal signatures. It also estimated the elements of
W (attributes) and H (locations) matrices (Fig. 3.1.2 and
3.1.3). Based on the H matrix estimates, Fig.3.1.4 shows
the predominant association of the 44 locations with the
extracted 5 geothermal signatures (labeled A, B, C, D,
and E). The associations are estimated automatically by
our ML tool; however, these associations are not
one-to-one for all the locations; some of the locations are
associated with more than one signature (Fig.3.1.2).
Nevertheless, our ML analysis identified the association
of the 44 locations with the 4 physiographic provinces blindly (Fig.3.1.4). The reproduction of the
provinces is not perfect and captures the complexity of the geothermal conditions in the study area.
Signatures A and E cover MDVF. Signature A encompasses the area below the Jemez lineament (we call
it the southern MDVF). Signature E covers the Jemez lineament and its contiguous north area (we call it
the northern MDVF). Signatures B, C, and D capture the Basin and Range, the Colorado Plateau, and the
Rio Grande Rift provinces, respectively.

Based on the W matrix estimates (Fig.3.1.3), our ML algorithm categorizes signatures associated
with low- or medium-temperature hydrothermal systems based on the contribution of silica
geothermometer in each signature: low and high silica values define low- and medium-temperature
systems, respectively. Below, we describe how geology, hydrogeology, and geothermal attributes relate to
each signature and how the extracted geothermal signatures define the hydrothermal systems within
SWNM based on the H matrix estimates in Fig.3.1.3.

Signature A is representative of low-temperature hydrothermal systems because of the low
contribution of the silica geothermometer. This signature’s dominant attributes are Li+ concentration,
drainage density, and magnetic intensity (Table 3.1.2); gravity anomaly and volcanic dike density are also
essential attributes (Fig.3.1.3). Magnetic intensity, volcanic dike density, and gravity anomalies indicate
the manifestation of plutonic mafic rocks due to Tertiary volcanic events49. The locations associated with
Signature A are in the southern MDVF. This portion of the MDVF has a history of active volcanism in the
past50–53 that might have further enhanced Volcanic dike density and secondary mineralization. The
resultant secondary mineralization is expected to elevate gravity anomaly and magnetic intensity in this
region. The dominant attributes except drainage density are indicators that the hydrothermal systems in
this region are prospective geothermal resources. Yet, NMFk did not diagnose the Signature A locations
as medium-temperature hydrothermal systems because of the low silica geothermometer contribution to
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this geothermal signature. A possible explanation is a lack of
high-temperature gradient in this area due to increased infiltration caused
by high drainage density. It is also important to note that elevated Li+

concentration here is not correlated with high B+ concentrations. This
suggests different subsurface mechanisms are causing elevated Li+ / B+

concentrations in geothermal systems.
Signature B represents medium-temperature hydrothermal

systems because of the high contribution of the silica geothermometer.
The other dominant attributes of this signature are gravity anomaly and
depth to the basement (Table 3.1.2). Also substantial are B+ and Li+

concentrations, magnetic density, quaternary fault density, and heat flow
(Fig.3.1.3). Heat flow and depth to the basement are unique dominant
attributes of this signature. Heat flow is also an indicator of a temperature
gradient, while depth to the basement is an indicator of a high reservoir
depth and a large distance of the heat source distance from the ground
surface. The locations associated with Signature B fall in the southern Rio
Grande Rift; there is also one location in the Basin and Range province,
suggesting an extension of this rift signature within the Basin and Range.
The area covered by Signature B went through frequent Tertiary and some
Quaternary volcanic events49. Therefore, it is not surprising that magnetic
intensity, gravity anomaly, and volcanic dike density are dominant
attributes. This area also has a low crustal thickness49,54,55, which indicates
that this area is also closer to the mantle heat source. Depth to the

basement is the deepest in the
study area that may assist in
entrapping the heat originating
from the mantle. The
high-temperature gradient, deep
basement, and lower-crustal
thickness may cause the
medium-temperature
hydrothermal systems in this
region. Further field explorations
and data collection activities are
required to define better the
locations associated with this
geothermal signature and
associated hydrothermal
resources.
Signature C represents low-temperature hydrothermal systems
because of the low contribution of the silica geothermometer.
The dominant attributes of this signature are crustal thickness,
magnetic intensity, and B+ and Li+ concentrations (Table 3.1.2);
drainage density is essential as well (Fig.3.1.3). B+ and Li+ here
are collocated (in contrast with Signature A above) and may be
released from the subsurface due to the nearby heat source,
while magnetic intensity may indicate secondary mineralization
due to Tertiary volcanic events, producing plutonic mafic
rocks56–58. These three attributes suggest potential heat sources at
depth. Drainage density and crustal thickness are a unique
combination of attributes for this signature, indicating that it
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might represent lateral hydraulics. The locations associated with Signature C are within the Colorado
Plateau. However, the high significance of B+ and Li+ concentrations, magnetic intensity, drainage
density in this signature are good indicators of geothermal resources. NMFk did not designate this
signature as medium-temperature hydrothermal systems due to the low silica geothermometer impact on
this geothermal signature. The large crustal thickness may preclude heat flow in this region that might be
a potential explanation for the designation as low-temperature hydrothermal systems.

Signature D represents low-temperature hydrothermal systems because of the low contribution of
the silica geothermometer. The dominant attributes of this signature are quaternary fault intersection
density, fault intersection density, seismicity, state map fault density, and spring density (Table 3.1.2);
drainage density and hydraulic gradient are also critical (Fig.3.1.3). Quaternary fault intersection density,
fault intersection density, seismicity, and state map fault density suggest that this signature represents
tectonic features. The locations associated with this Signature D are in the Rio Grande Rift and the Jemez
lineament, which went through both extension and subduction tectonic events49,55. Active tectonic events
increase fault intersection density, which imporves drainage density, fault intersection density, spring
density, and hydraulic gradient. Also, seismicity indicates the presence of active faults. This signature did
not get high contribution from attributes, which are good indicators of medium-temperature hydrothermal
systems such as B+, Li+, gravity anomaly, magnetic intensity, heat flow, and silica geothermometer. The
dominant attributes indicate that the locations associated with this signature have good groundwater flow
characteristics. These locations are prospective hydrothermal systems for further exploration.
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Signature E represents medium-temperature
hydrothermal systems because of the high contribution of the
silica geothermometer. The remaining dominant attributes of
this signature are precipitation, hydraulic gradient, and state
map fault density (Table 3.1.2). State map fault density and
hydraulic gradient represent deep flow circulation, meaning
that this signature may capture vertical groundwater flow
characteristics. The locations associated with this signature
are in or around the Jemez lineament within the northern part
of the MDVF. The Jemez lineament went through rigorous
Tertiary and Quaternary volcanism events40,50–53. Also, this
region has an intensive tectonic history when compared to the
surrounding areas. Both high volcanism and tectonic events
make this area more amenable to have geothermal resources.
Besides, this area has high precipitation, which increases
deep flow circulation. A fluid circulation from the depth
where hot water exists is a sound indicator of good
hydrothermal systems. The combination of high-reservoir
temperature (silica geothermometer) and deep fluid
circulation characteristics make the northern MDVF
favorable to medium-temperature hydrothermal systems.
Further field explorations and data collection activities are

required to define better the
locations associated with this
geothermal signature and associated
hydrothermal as geothermal
resources.
Based on ML results, among the 18
analyzed attributes, the 12 dominant
attributes related to
medium-temperature hydrothermal
systems are B+ and Li+

concentrations, silica
geothermometer, heat flow, gravity
anomaly, magnetic intensity,
quaternary fault density, state map
fault density, depth to the basement,
drainage density, precipitation, and
hydraulic gradient. All of these
attributes are related to geothermal
signatures B and E (Table 3). The
remaining six attributes are volcanic
dike density, volcanic vent density,
fault intersection density, springs
density, crustal thickness, and
seismicity. These attributes are
dominant in Signatures A, C, and D
(Table 3.1.2), representing
low-temperature hydrothermal
systems.
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Our ML analyses designated two unique geothermal signatures, B and E, associated with
medium-temperature hydrothermal systems. A biplot is generated to show the correlations between these
two signatures (Fig.3.1.5). Here, the signatures are viewed as basis vectors similarly to how eigenvectors
under PCA analyses are defined32. A biplot is an exploratory scatterplot showing the mutual relation
between two signatures based on how attributes and locations associated with these signatures are
weighted. In a biplot, an attribute is well correlated if its significance is high for both signatures. In
contrast, some attributes might be important for one signature but not for another signature. A biplot is
also a good indicator if an attribute is not critical for both signatures; these attributes will be located close
to the plot origin. In a biplot, well-correlated attributes lie on the diagonal between the two axes and away
from the origin, while uncorrelated attributes lie close to the axes. The biplot in Fig. 3.1.5 demonstrates
the correlation of attributes between the geothermal Signatures B and E. The only correlated attribute is
the silica geothermometer, which classifies these signatures as medium-temperature hydrothermal
systems. This lack of correlation among the other geothermal attributes reveals that they are uniquely
associated with these two signatures. Because the geology of each province is unique, their controls on
hydrothermal systems also vary. Signature B falls mainly in the southern Rio Grande Rift zone. The
hydrothermal system of this area is primarily defined by gravity anomaly, depth to the basement, B+ and
Li+ concentrations, and heat flow. On the other hand, Signature E falls in the northern MDVF, which is in
the north portion of the study area. Hydrothermal systems in this area are defined by precipitation,
hydraulic gradient, state map fault density, state map fault density, and drainage density.

Signatures B and E are associated with the northern MDVF and Rio Grande Rift provinces,
respectively. Both areas went through Tertiary and Quaternary volcanisms, but the northern MDVF went
through more frequent volcanic events than the Rio Grande Rift zone. Also, the northern MDVF is
tectonically more active than the Rio Grande Rift zone. However, a tectonic extension feature is present in
the western and easter portions of the Rio Grande Rift zone, but it is absent in the northern MDVF.
Moreover, the Rio Grande Rift zone has a lower crustal thickness than the northern MDVF. All these
observations demonstrate the unique geological and hydrological characteristics of the two regions.

Therefore, they represent unique hydrothermal
systems, and these differences were successfully
captured and extracted by our NMFk analyses.
This demonstrates that the ML algorithm can
learn the geothermal characteristics of the
analyzed dataset just based on provided data
describing the geothermal conditions in the
SWNM region.
In conclusion, our ML analyses characterized a
geothermal dataset of SWNM to (1) identify
hidden geothermal signatures, (2) estimate the
optimal number of signatures, (3) find dominant
attributes associated with each signature, (4)
map spatial association of the signatures. The
locations represent hydrothermal systems within
the four physiographic provinces present within
the SWNM study domain. On purpose, the
analyses did not include the labeling of the
hydrothermal systems based on their type and
their association with physiographic provinces.
Our ML analyses were also performed without
providing information about the coordinates of
the analyzed locations. In this way, we tested if
the algorithm can blindly group the locations
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based on their type and province association based only on observed geothermal attributes.
Out of five extracted geothermal signatures, two (B and E) are associated with

medium-temperature hydrothermal systems. The zones associated with these signatures (northern MDVF
and the Rio Grande Rift) required further exploration to designate them as geothermal resources. The PFA
work41 generated a preliminary geothermal prospectivity map. In Phase 2 of our project (if funded), we
will combine these PFA results and the knowledge accumulated in this study to make an ML-enhanced
geothermal prospectivity map of the SWNM region. This map will assist in discovering hidden resources
and their accurate locations for geothermal heat extraction. All the data and codes, including Jupyter and
Pluto notebooks, required to reproduce these results are available at the GeoThermalCloud GitHub and
GDR repositories (https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/SWNM).

3.2 Great Basin
Under this project, we analyzed geochemistry data of the Great Basin (Fig. 3.2.1). The Great Basin covers
Nevada, much of its neighboring states Oregon, Utah, California, Idaho, and Wyoming. It has multiple
geothermal reservoirs ranging from low- to high-temperature resources, and a vast area is yet to be
explored to discover hidden geothermal resources. Plenty of data have been collected over several decade
to characterize the regional geothermal resources. Here, we process public data available at the Nevada
Bureau of Mines and Geology website [http://www.nbmg.unr.edu/Geothermal/GeochemDatabase.html].
The size of the data for this study is 14341 x 18; at 14341 locations, 17 geochemical attributes (water
cations/anions) and groundwater temperature are observed59,60. The 18 attributes are pH, total dissolved
solids (TDS), Al3+, B+, Ba2+, Be2+, Br–, Ca2+, Cl–, HCO3

–, K+, Li+, Mg2+, Na+, ∂18O, groundwater
temperature, quartz geothermometer, and chalcedony geothermometer. pH represents alkalinity of water,
TDS is the total amount of major and tracer cations/anions, Ca2+, K2+, Mg2+, Na+ are major cations, HCO3
and Cl are major anions, Al3+, B+, Ba2+, Be2+, Br–, are Li+ trace elements, and ∂18O is an oxygen isotope.
Major anions/cations define the ionic type of water. The ∂18O describes the origin (e.g., meteoric,
magmatic, connate) of the water. Groundwater temperature indicates the water temperature at a shallow
depth rather than at the actual geothermal reservoir depth. Quartz and chalcedony geothermometers
indicate potential reservoir temperature. Table 3.2.1 lists the minimum, maximum, mean, and missing
values/sparsity in the data. The minimum and maximum values demonstrate that the dataset attributes
vary over a wide range. The missing data column in the table indicates that the dataset is heavily sparsed.
Here, we applied the GeoThermalCloud ML methods to analyze this sparse geothermal/geochemical data
and better understand/predict the spatial distribution
of the available geothermal resources.

The dataset described above was used to
perform NMFk analyses. Before the ML runs, the
dataset was log-transformed and normalized
between 0 to 1. ML analysis was performed for k=
2, 3, …, 15 number of signatures. The ML
algorithm selected the k=3 solution to represent the
optimal number of hidden geothermal signatures for
the Great Basin dataset. The k > 3 solutions
overfitted the problem. Fig. 3.2.2(a) demonstrates
the attribute matrix of the optimal NMFk solution;
the attribute matrix depicts the importance of
attributes to represent extracted signatures. Next, we
define types of hydrothermal systems based on the
contribution of groundwater temperature in the
extracted 3 signatures. Based on this assumption,
Signatures A, B, and C define low-, high-, and
medium-temperature hydrothermal systems,
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respectively. Signature
A represents
low-temperature
hydrothermal systems
because of the low
contribution of
groundwater temperature
in this signature. The
dominant attributes of
this signature are TDS,
Br+, B+, and ∂18O.
Signature B represents
high-temperature
hydrothermal systems
due to the high
contribution of
temperature in this
signature. The dominant
attributes of the
signature are pH, Al3+,
Be2+, as well as quartz
and chalcedony
geothermometers. Signature C defines medium-temperature hydrothermal systems because of the
medium contribution of temperature. The dominant attributes of the signature are Mg2+ and Ca2+.

The spatial distribution of each signature is shown in Fig.3.2.2(b), where blue, red, and orange
colors represent low-, high-, and medium-temperature hydrothermal systems. The distribution of
Signatures B and C suggests that the significant portions of the Great Basin region have prospective

geothermal resources. Areas with a
high density of B and C locations are
labeled with ellipses in the figure.
Some of these locations also align
with existing geothermal resources
and sites such as Dixie Valley and
Brady geothermal areas in Nevada.
Maps on the upper row of Fig.3.2.3
further demonstrate the spatial
distribution of the extracted
geothermal signatures.
The maps in Fig.3.2.2(b) and
Fig.3.2.3(upper row) present the
same ML results; however, they are
shown in two different ways.
Fig.3.2.2(b) shows how the locations
are labeled as A, B, or C depending
on the weights in the location matrix
estimated by the ML analyses. The
signature associations are determined
automatically by our ML algorithm.
Fig.3.2.3(upper row) shows the
spatial interpolations of the weights
in the location matrix for the 3
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signatures separately. The spatial mapping is obtained by binning the locations shown in Fig.3.2.1 into a
regular grid (with dimensions 108 x 128 in horizontal and vertical directions, respectively). The weights
are also normalized between 0 and 1. The color scales in Fig.3.2.3(upper row) emphasize the range from 0
to 0.5; nevertheless, the actual values vary from 0 to 1. As a result, the maps show the probability of
occurrence of the extracted geothermal signatures within the study domain. Therefore, the maps represent
prospectivities associated with the extracted hidden geothermal signatures related to different geothermal
reservoir types.

Using our ML tool, we can perform analyses on sparse datasets and make predictions for missing
values. For example, B+, ∂18O, Br+, and TDS are dominant attributes of Signature A, and all of them are
sparse (bottom row of Fig. 3.2.3). Yet, our ML methodology estimates a continuous spatial distribution
for Signature A (top row of Fig. 3.2.3). Similarly, the dominant attributes of Signature B and C are also
sparse (Fig. 3.2.3). Still, the ML algorithm reconstructs a continuous signature distribution over the study
domain. This is possible because NMFk and NTFk can learn from only a partially represented object.
This capability is generally absent in many traditional machine learning techniques, such as PCA, deep
neural networks (convolutional or recurrent), etc.

As discussed above, all attributes in the Great Basin dataset have some level of sparsity (Table
3.2.1). For example, ∂18O has 90% sparsity (Table 3.2.1, Fig. 3.2.4(left)). After learning the mapping
function among all attributes and generating the signature mappings (Fig. 3.2.3), our ML algorithm can
estimate a continuous distribution of all the attributes, including ∂18O (Fig. 3.2.4). In this process, our ML
method is superior to alternative statistical approaches such as kriging and co-kriging (i.e., Gaussian
process modeling) for interpolation. The kriging-based methods require additional information to account
for interrelationships among analyzed attributes (e.g., variograms and co-variograms). Our ML approach
identifies the interrelationships among the attributes automatically based on the provided data. Both
NMFk and NTFk can be applied to find mapping functions among all attributes, both in attribute and
spatial domain. As a result, we constructed a continuous distribution of all attributes in the dataset. This
continuous distribution of data can be further utilized for identifying geothermal resources either in the
whole Great Basin or part of the Great Basin.

In addition to making predictions about the attribute values at the locations where data are
missing, our ML methodology estimates uncertainties in these predictions. For example, the developed
ML model is also applied to predict the temperature based on all other attributes. To test ML predictive
capabilities, the data are split into training and prediction sets (Table 3.2.2). Furthermore, different levels
of artificial noise were added to the training dataset (Table 3.2.2) to evaluate the ML sensitivity to
measurement errors. The accuracy of the blind temperature predictions was assessed using a coefficient of
determination (R2) between actual and estimated values for a series of test problems (Table 3.2.2). The
results listed in Table 3.2.2 demonstrate that accurate prediction (R2 > 0.9) can be obtained even if we use
only 50% of the data with <10% measurement errors. The above results also validate the applicability of

our ML methods to predict
geothermal conditions based on
limited data.
In conclusion, the ML analyses
identified hidden geothermal
signatures associated with low-,
medium-, high-temperature
hydrothermal systems, their
dominant characterization attributes,
and spatial distribution within the
study area. Also, we generated
continuous maps of low-, medium-,
and high-temperature hydrothermal
systems that will assist in
developing geothermal resources in
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the Great Basin. Furthermore, we constructed continuous distribution from the sparse distribution of
attributes that will help analyze other geological/geophysical/geothermal attributes with geochemical
attributes.

It is important to note that there are already new geothermal and geochemical datasets that have
been collected in the Great Basin area59,60, which are not reflected here because they are not currently
publicly available yet. Once these datasets become accessible, we can rerun our analyses to assimilate the
new data. Although the ML processing of the Great Basin is computationally intensive, it does not take
more than a week using available cutting-edge computing resources at LANL and on Google Cloud.
Furthermore, the GeoDAWN dataset is currently collected in this region. As already demonstrated, our
ML tools are computationally efficient and robust to process large datasets. Therefore, the assimilation of
the GeoDAWN dataset together with other existing Great Basin datasets will not be methodologically or
computationally a challenge for us; we are planning to conduct this work under Phase 2 of this project if
we get selected to be funded. The new work will also compare how different data with different pedigree
and quality will impact the extracted geothermal signatures and ultimately geothermal prospectivity of the
Great Basin region.

All the data and codes, including Jupyter and Pluto notebooks, required to reproduce these results
are available at the GeoThermalCloud GitHub and GDR repositories
(https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/GreatBasin).
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3.3 Brady site, Nevada
Brady geothermal field is located in northwestern Nevada, USA. It is located in the Basin and Range
physiographic province. It has seen geothermal electricity production since 1992 and research or
exploration since at least 1959. The existing hydrothermal system supplies hot fluid to two power stations
and a direct-use vegetable drying facility. Electricity production capacity at Brady is 26.1 MWe, and ~7
MWe is supplied to the drying facility. Temperatures of produced fluid have been ~130-185°C, though
temperatures as high as 219°C have been measured as well. These relatively high temperatures at
relatively shallow levels (300-600 depth for some production wells) occur due to either convective
upwelling driven by temperature control differences in fluid density or hydraulic head-driven circulation
through the hot rock. In either case, relatively high heat flow at the site is associated with crustal thinning
providing the heat. Here, our GeoThermalCloud framework is applied to identify the key geologic factors
contributing to the geothermal production in the Brady site. Transmissive fluid flow pathways are
relatively rare in the subsurface but are critical components of hydrothermal systems like Brady and many
other similar fluid flow systems in fractured rocks. Our ML methods are applied to a library of fourteen
3D geologic characteristics hypothesized to control hydrothermal circulation in the Brady geothermal
field.

At the Brady site, as well as at many other geothermal sites, crustal permeability is a key
parameter in geothermal models for the exploration and development of these geothermal resources.
Permeability is, however, highly variable and heterogeneous in space61–65, and this substantially
complicates the characterization of subsurface hydrothermal processes. Accordingly, it is common in
developed geothermal systems to produce fluid flow from a few relatively small (sub-meter- to
meter-long) intervals of a borehole that may be 100s or 1000s of meters in total length (based on Nevada
Division of Minerals, publicly available data). This compartmentalization of hydrothermal fluid flow
means that the volume of rock that transmits fluids at rates suitable for power production or direct use is
much smaller than the volume of rock that does not transmit fluid (or transmits at sub-commercial flow
rates). This presents a significant challenge to efficient exploration, development, and management of
these renewable energy resources. Compartmentalization of the fluid flow system may be associated with
a variety of geologic characteristics. For instance, spatial changes in fracture permeability throughout a
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fault network and/or permeability
variation in the stratigraphic succession
may control compartmentalization.

The stratigraphic section at
Brady consists of metamorphic
basement rocks overlain by Oligocene
to late Miocene volcanic rocks and late
Miocene to Holocene sedimentary
rocks. The Brady fault zone is a
west-dipping, north-northeast-striking
system of normal faults that cuts this
stratigraphic section (Fig.3.4.1). The
step-over66,66–68 is an area where
parallel but non-collinear strands of the
Brady fault zone come together (e.g.,
Peacock and Sanderson, 1991, 1994;
Fossen and Rotevatn, 2016). The
southern segment of the Brady fault
zone steps to the left to meet the
northern segment (Figure 169). It has
been suggested70 that the occurrence of
the hydrothermal system within the
step-over is related to focused stress
and strain that periodically occur at the
step-over during fault slip, resulting in
progressive generation and
maintenance of a dense fracture
network over geologic time. Advection
of heat to shallow levels by
hydrothermal circulation within this
fracture network is evident from a ~3
km-wide × 6 km-long (across strike ×
along strike) temperature anomaly
centered on the step-over (Fig.3.4.1).
Geothermal production wells at Brady are situated within the step-over. Fluids are produced from two
levels; ~300-600 m and ~1750 m depth (based on Nevada Division of Minerals, publicly available data).

Our ML methods are applied to reveal the geologic attributes that influence this
compartmentalization of fluid flow in hydrothermal systems. The ML analyses evaluate
three-dimensional (3D) geologic characteristics estimated along the production, injection, and
non-productive wells at the Brady site. The dataset includes (1) Fault, (2) Fault network, (3) Stress and
strain, (4) Stratigraphic, and (5) Temperature attributes. How these attributes are computed is discussed
in greater detail in our research paper (Siler et al., 2021).

Fault attributes are computed for each of the thirty-two faults defined by the 3D geologic
map67,68,71,72. The faulting attribute has a value of ‘1’ where a well is located within a fault zone and ‘0’
for well intervals not situated within a fault zone. The fault curvature attribute is the along-strike and
down-dip curvature calculated along each fault. The fault dilation tendency and fault slip tendency
values are computed using existing methods73,74 and a local stress model calculated at Brady75. The fault
dilation tendency and fault slip tendency attributes are the ratios of the resolved normal stresses and the
normal to shear stress ratio on faults, respectively. Fault segments that are either highly dilatant (high
fault dilation tendency) or stress loaded for slip (high fault slip tendency) are likely to host fluid flow76.
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For all wells, the inverse distance from faults attribute is computed as the difference between the distance
to the nearest 3D mapped fault plane and the maximum distance to a fault in the dataset.

Fault network attributes capture areas in the subsurface with especially dense faulting and
fracturing are expected to have relatively high permeability and thus host hydrothermal circulation. The
fault density and fault intersection density are calculated in 3D space71. Fault intersections represent
structural discontinuities, where stresses become concentrated and accentuated fracturing is expected77,78.
Similarly, areas with many closely spaced faults are also likely to have a relatively high density of
fractures, i.e., high permeability.

Stress and strain attributes characterize the step-over in the Brady fault, which is an important
attribute controlling the presence of hydrothermal circulation at Brady66,66–71. Stress and strain become
concentrated at the step-over when slip occurs on the Brady fault, and the location of the stress and strain
perturbation is largely concomitant with the production well field and the local temperature anomaly70.
The 2D modeled dilation, normal stress, and coulomb shear stress as a result of 1-meter normal slip on
the Brady fault are calculated at 250-meter-depth intervals from the surface to 750 m depth70. Siler et al.
(2018)70 suggest that the stress and strain perturbations that occur with fault slip result in a zone of
accentuated secondary faulting and fracturing that is an essential attribute in localizing hydrothermal
circulation in the step-over. To account for the uncertainties associated with the state of stress at the site,
in a set of additional ML analyses, the dilation, normal stress, and coulomb shear stress are computed
for a series of stress ratios: 1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and  4:1.

Stratigraphic attributes characterize changes in the permeability caused by stratigraphy. The
distance from the nearest stratigraphic contact (inverse distance from contacts) is calculated as the
difference between the distance to the closest stratigraphic contact along each well and the maximum
distance to a contact in the dataset. In this case, high values of inverse distance from contacts would be
expected to correlate with hydrothermal fluid flow. Alternatively, relatively thick geologic units, i.e.,
relatively large, intact volumes of rock distal to stratigraphic contacts, may focus strain on a relatively
small number of dominant, high-aperture fractures. Areas with high values for the thickness of each
stratigraphic unit (stratigraphic unit thickness) from the 3D geologic map could be favorable for
localizing hydrothermal circulation in this case. The ~300-600-m-depth production reservoir at Brady
occurs in Miocene mafic to intermediate volcanic rocks. It is possible that these specific stratigraphic
units have high matrix porosity and permeability and/or are particularly favorable for developing highly
transmissive fracture systems when
faulted. The good lithology attribute is
‘1’ for well intervals with these
stratigraphic units and ‘0’ for intervals
in other units.

Temperature attribute:
Advection is a much more efficient
means of heat transport than
conduction. Higher temperatures,
therefore, are expected within or near
transmissive fluid flow conduits.
Equilibrated temperature logs from
thirty-nine deep (as deep as ~2 km)
geothermal wells and seventy-nine
shallow (~150 m) temperature gradient
wells79 were utilized to build a 3D
temperature model. The modeled
temperature is projected to each of the
forty-seven wells at the Brady site.

Based on all the data discussed
above, a 3D data tensor has been
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generated. The first tensor dimension
represents the 47 wells. The second
dimension is indexing the 14 attributes
(discussed above). For each well and
attribute, we have data for 750 vertical
depths 1 m apart, and this defines the third
tensor dimension. The processed Brady
dataset is available in our
GeoThermalCloud repositories on GitHub
and GDR. The 3D data tensor is analyzed
using both matrix and tensor factorization
methods. Both methods produced similar
results. The ML algorithm extracted 4
hidden geothermal signatures labeled A, B,
C, and D6.

How the hidden geothermal
signatures are related to analyzed
geothermal attributes is summarized in
Fig.3.4.2. The figure plots the attribute
matrix, which defines the weights of each
attribute pertaining to the 4 geothermal
signatures. In Fig.3.4.2, red colors indicate
attributes with high importance with that
particular signature, green colors show that
an attribute has a low weight with that
specific signature.

The associations of the four
signatures with the site wells are also
identified. Fig.3.4.3 shows the Brady site
and the geothermal signatures to which
each well falls into.

Figure 3.4.4 shows a biplot of
signatures B and A. These two signatures
most effectively separate the production
wells from the injection and non-productive wells. The production wells have relatively high B values and
relatively low A values. The injection wells have low B values. The attributes with relatively high B
values and relatively low A values are those that most effectively separate the production wells from the
other wells. These results show that six of the nine wells that have been used for geothermal production
at Brady from the shallow (~300-600 m depth) reservoir (June 1992-August 2019) are associated with
signature B. NMFk results indicate that the fault density and fault intersection density attributes are more
dominant in signature B (and therefore predominate along the production wells) relative to injection wells
and non-productive wells.

Fault attributes: The faulting is the predominant fault attribute associated with B (Fig.3.4.2).
This is evident on Fig.3.4.4 in which faulting plots in the upper left quadrant, with relatively high B and
relatively low A; a similar pattern is observed at the majority of the production wells. Though fault
intersection density also has high B values, it has somewhat higher values in A, C, and D (Fig.3.4.2), so it
is less distinctly related to B relative to faulting. In Fig.3.4.4, this is evident from inverse distance from
faults plotting in the upper-right quadrant, farther to the right relative to the production wells. These
results suggest that the presence or absence of distinct, macro-scale fault zones is strongly related to
production wells, more so than to the other fault attributes such as inverse distance from faults, fault
curvature, slip tendency, or dilation tendency.
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Fault network
attributes: The fault density is
the predominant fault network
attribute related to signature B
and the production wells
(Figure Fig.3.4.2). This is
evident on Fig.3.4.4, in which
fault density plots in the upper
left quadrant, with relatively
high B and relatively low A,
similar to the majority of the
production wells. Though the
inverse distance from faults has
a high B value, it also has
relatively high A and C values
(Fig.3.4.2) and plots to the right
of the production wells relative
to fault density. This indicates
that fault density is more
strongly related to production
wells than fault intersection
density.

Stress and strain attributes: Dilation occurring due to modeled fault slip is the predominant
stress/strain attribute related to B and the production wells. This is evident on Fig.3.4.4, in which dilation
plots in the upper left quadrant, with relatively high B and relatively low A values, similar to the majority
of the production wells. These results indicate that dilation is strongly related to production wells relative
to normal or coulomb, the other stress/strain network attributes examined herein.

Stratigraphic attributes: Stratigraphic unit
thickness attribute has high B values relative
to A values (Fig.3.4.2). Relative to the
nearness to geologic contacts (inverse distance
from contacts), and the specific geologic units
associated with geothermal production (good
lithology), unit thickness is more strongly
related to B and the production wells.
However, A values for unit thickness are high
relative to the production wells (unit thickness
plots in the upper right on Fig.3.4.4), so unit
thickness appears to be less strongly related to
the production wells relative to dilation, fault
density, and faulting.
The modeled temperature has relatively low
values for all extracted hidden signatures. This
suggests that the modeled temperature is not
significantly higher or lower along with any
subset of wells relative to the others.
Geologic controls: The ML results suggest that
two dominant characteristics of the geologic
structure control hydrothermal processes at
<750 m depth at Brady are: (1) the distinct,
macro-scale faults and (2) the step-over in the
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Brady fault system. The macro-scale faults are those that are mappable in 3D at the local scale using
geologic and geophysical evidence (Siler et al., 2021). Interestingly, this relatively simple fault attribute,
the binary occurrence or non-occurrence of a 30-m-wide fault zone (Figure 2), is more closely related to
the production wells than the static stress state of the faults (dilation or slip tendency), the geometry of
the faults (fault curvature), or the nearness to the mapped fault planes (inverse distance from faults).
These are important conclusions that can be made without the use of our advanced ML methods.

Brady fault zone: The step-over in the Brady fault zone (Fig.3.3.1) is the other dominant geologic
attribute controlling hydrothermal processes at Brady. The geometry and location of the step-over control
the spatial density of fault planes (fault density) since faults are most dense in the step-over (Fig.3.3.1).
The step-over also controls the dilatational strain that occurs as a result of modeled fault slip on the Brady
fault zone (dilation)70. The ML results suggest that the spatial density of fault planes and the modeled
dilation are the most effective indicators of step-over’s control on hydrothermal processes, relative to the
other stress and strain attributes (normal and coulomb) and the spatial density of fault intersections
(inverse distance from faults). Thicker geologic units (unit thickness) may also influence hydrothermal
processes. This may indicate that faults cutting through thicker geologic units preferentially transmit the
high flow rates necessary for geothermal production relative to faults cutting thinner units. However,
based on the ML analyses, this control appears to be secondary to the macro-scale faults and the
step-over. The modeled temperature attribute is not strongly related to production wells relative to the
other wells. It is likely that our extrapolation of the existing temperature data does not sufficiently resolve
advective relative to conductive heat transport, and thus modeled temperature is relatively ineffective for
determining discrete fluid flow pathways.

State of stress: To better estimate the capability of our ML algorithms to evaluate the impact of
the state of stress for geothermal production at the Brady site, we performed additional ML analyses. To
account for the uncertainties associated with
the state of stress at the site, in a set of
additional ML analyses, the dilation, normal
stress, and coulomb shear stress are computed
for a series of stress ratios: 1:1, 1:2, 1:3, 1:4,
2:1, 3:1, and 4:1. The impact of the alternative
ratios is visualized in Fig.3.3.5. All these 7
stress cases are used together with other
geologic attributes to create 7 alternative
datasets. Each dataset is represented by 3D
data tensors with dimensions equivalent to the
datasets analyzed above. The only differences
between the 7 tensors are in the 3 stress
attributes: dilation, normal stress, and
coulomb shear. The goal of the ML analyses is
to select which of these 7 stress ratios are the
most representative for the site. This is
evaluated based on the quality of the
reconstruction of the original tensors, which is
achieved by the ML algorithm. The better the
reconstruction, the higher the ML estimated
consistency between the 3 stress attributes
(dilation, normal stress, and coulomb shear)
and the remaining 11 geothermal attributes.
Estimates of the location matrix under the 7
different stress ratios are shown in Fig.3.3.6.
The production wells, injection, and
non-productive wells have similar associations
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with the extracted signatures for the 7 different stress scenarios. However, the overall reconstruction error
is the lowest for the 2:1 ratio case (the seven reconstruction errors are: 1:1 - 12772, 1:2 - 12773, 1:3 -
12691, 1:4 - 12685, 2:1 - 12666, 3:1 - 12928, and 4:1 - 12788; the lowest estimate is for 2:1). In fact, this
is the most probable stress ratio at the site (2:1) based on previous studies.

The ML analyses conducted on a 3D geological dataset from Brady geothermal field elucidate the
geologic characteristics that control hydrothermal circulation in the shallow (~300-600 m depth)
geothermal reservoir. The ML results show that known, macro-scale faults, i.e., those that have been
mapped in 3D based on geological and geophysical evidence, are strongly associated with the production
wells at the Brady site. Geologic attributes that occur most prominently within the Brady step-over, such
as high spatial densities of faults, and dilatation brought on by modeled fault slip, are also critical
geologic attributes associated predominantly with production wells relative to other wells. These results
suggest that the shallow hydrothermal reservoir at Brady is hosted by relatively prominent faults.
Locations where such faults lie within the subsurface projection of the step-over (i.e., the volume of rock
with relatively high fault and fracture density and where fractures tend to dilate due to periodic fault slip)
are exceptionally well suited for geothermal production. In concert and not either independently, these
two attributes control the presence of the Brady hydrothermal system that has been developed for
electricity production and direct uses. The NMFk methodology successfully differentiates production
wells amongst a large number of non-productive wells using just these geologic data. This suggests that
these geologic attributes may be effective as training data for using ML techniques to identify areas
within unexplored subsurface volumes that have the geologic characteristics that constitute productive
geothermal wells.

All the data and codes, including Jupyter and Pluto notebooks, required to reproduce these results
are available at the GeoThermalCloud GitHub and GDR repositories
(https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/Brady).

3.4 GeoDT synthetic dataset
Our rapid multi-physics GeoDT model80 was used to generate a library of over 2000 geothermal
production scenarios based on the UtahFORGE site’s parameters. This GeoDT modeling approach
enables valuation that considers the interplay between general site parameters (e.g., depth and thermal
gradient), in-situ stress attributes (e.g., stress anisotropy), rock mechanical attributes (e.g., elastic moduli),
natural fracture strength and permeability characteristics (e.g., hydraulic aperture and friction angle),
natural fracture intensity (e.g., number, orientation, and spacing for fractures), fracture complexity (e.g.,
roughness), and site design decisions (e.g., well spacing and well orientation). GeoDT also predicts
maximum induced seismic magnitudes using a built-in length, displacement, aperture, and stress scaling
relationship that is based on existing power-law scaling relationships81. The site-specific parameters from
the UtahFORGE site used for the model are given in Table 3.8.1. Each modeled scenario included
stochastically generated natural fractures. An example system is visualized in Fig. 3.8.1. To solve this
system, GeoDT completes the following computational sequence:

1. Natural fracture placement, well placement, and calculation of fracture activation pressure (Pc)
based on the far-field stress state, mechanical properties, and orientations.

2. Hydraulic stimulation by simultaneous injection into all of the intervals. This ignores sequencing
and staging but accelerates the solver.

3. Long-term flow calculation with consideration of continued stimulation, far-field leakoff, and 3D
connectivity issues through the well and fracture network.

4. Long-term transient heat-extraction and production simulation where heat from the rock transfers
to the injected fluid.

5. Electrical power output calculation via the Single-flash Rankine steam cycle. More advanced and
higher efficiency cycles are not evaluated at this time, so the estimates will be lower than what is
achievable by the best available technologies.
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Combining these mechanisms, this tool
models the whole geothermal
development cycle from initial well
design to the end of production. Since
GeoDT includes geomechanical coupling
between fracture properties and stress,
results allow us to probe the influence of
stress data on geothermal production
potential at a given site. GeoDT also
enables us to investigate links to
seismicity and the benefits or
consequences of key design attributes
such as well spacing, orientation, and
diameter.
Results from GeoDT (Fig. 3.8.2) predict
the time series of geothermal power
production for each of over 2000
subsurface scenarios. For each scenario,
GeoDT estimates when thermal
breakthrough (i.e., produced fluid
cooling) begins, and the thermal and
electrical power outputs over time. Initial
inspection of the results from our GeoDT
analysis shows an apparent link between

the well spacing and the electrical power output of the system after 20 years of production. There also
appears to be a strong link between the number of injection intervals and power output. However, these
links are only a small portion of what can be identified using ML methods developed by our team.

Applying GeoThermalCloud ML methods reveals four constitutive multi-attribute input
signatures that control the time series of the produced fluid enthalpy (i.e., geothermal fluid energy) and
the related electrical power potential. The structure of these signatures is shown in Fig.3.8.3. The roles of
all four signatures are stronger and more varied for enthalpy output (i.e., thermal power output) than for
electrical power output, where two of the signatures are almost flat. Each signature is constructed from
multiple input attributes and captures the impact of model inputs onto the model outputs. The complete
composition of each controlling signature is shown in Fig.3.8.4. Based on this result, the dominant
attribute in each signature is identified by the largest numbers (marked with red boxes in Fig. 3.8.4) in
each signature. We can use these dominant attributes to categorize the signatures into combining (1) well
spacing & other attributes, (2) stress & other attributes, (3) system (i.e., site conditions) & other attributes,
and (4) well dip (i.e., orientation) & other attributes. The signature that includes well spacing is the only
input that links to strongly increased power production over time. Increased in situ stress causes decreased
production over time. Here it is important to note that increased stress will cause fracture closure after
stimulation which will likely reduce production, but this stress increase will also provide for more shear
stress. Shear stress is a prerequisite for shear stimulation of fractures to increase reservoir performance,
but it is also a driver for induced seismicity. Additional work is needed to parse out the meaning of these
signatures and implications for site-specific geothermal energy production. GeoThermalCloud coupled
with GeoDT provides a good platform for this future work owing to its ability to rapidly model the effect
of complex interactions and design decisions on production for an extensive range of site conditions.

GeoThermalCloud ML methods also allow investigation of the effects of the input attributes
(Fig.3.8.4) on other outputs such as maximum induced seismic magnitude, far-field leakoff, and the
number of fractures that interlink the injection and production wells (Fig.3.8.5). Interestingly, there
appears to be a link between the well-spacing dominated signature and the maximum induced seismic
event magnitude. It is not yet clear what underlying mechanism drives this connection. Less surprisingly,
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the system attributes (e.g., natural fractures, well length, well diameter, and rock properties) have a strong
influence on the amount of fluid loss (i.e., boundary outflow rate) from the system. Stress effects on the
GeoDT results are clearly evident, but a clear causal pattern is not immediately apparent. Instead, stress
appears to associate with mixed effects, some positive and others negative. Another surprising result is the
importance of well dip and azimuth (i.e., well orientation). The cause of this importance is suspected to be
linked to the natural fracture orientations, especially Joint Set 3, which is northeast striking and southeast
dipping, making it a prime target for shear slip. At the UtahFORGE site, the nearby Opal Mound Fault is
also northeast striking and southeast dipping. The planned well orientation at UtahFORGE is nearly
perpendicular (i.e., face on) to this fault. Note that the presented results are preliminary, and the GeoDT
model was only just completed in 2021. More validation of GeoDT is needed to gain confidence in these
model predictions and their importance to guide field exploration and drilling decision making. Further
investigation of the identified signatures is required to more clearly understand the links and implications.
This additional work is planned for Phase 2 of our project.
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Fig. 3.8.3. ML identifies the signature structure of the enthalpy and power production time series predicted
by GeoDT. The primary physical components of each mixed signature are provided to aid interpretation. Only
one of the signatures (red) shows inputs that associate with increased production over time.

Fig. 3.8.4. Combined inputs of the four ML identified signatures that control geothermal power production.
Callouts are included to highlight the primary physical components of each signature. We categorize each
signature by its most dominant component. Red colors indicate parameters with high importance with that
particular signature, green colors show that a parameter has a low weight with that specific signature.
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Fig. 3.8.5. ML predicted effects of the identified multi-attribute signatures on various outputs from GeoDT.
Callouts are included to highlight significant links that aid understanding of subsurface geothermal
processes coupled with system design. Red colors indicate outputs with high importance with that particular
signature, green colors show that a specific output has a low weight with that specific signature.

3.5 Southwest New Mexico synthetic analyses
In section 3.1, we showed that the northern MDVF and southern Rio Grande provinces have
mid-temperature geothermal resources. These areas require further investigation to better characterize
geothermal conditions and pinpoint the prospective geothermal resource locations. To do this,
numerical-model analyses of the subsurface geothermal process are critical. However, in the SWNM
region, there are significant uncertainties associated with subsurface geothermal conditions, including
rock permeabilities, heat flux, and thermal gradient. Only a few studies40,41,82 discussed the permeability
uncertainty ranges. Literature values for heat flux and thermal gradients are also scarce, and existing
estimates are also uncertain.

To address these issues, we built a 3-D thermo-hydro-chemical (THC) model using the LANL
simulator PFLOTRAN (Fig. 3.5.1)83. The model simulates heat and mass transport and predicts the
spatiotemporal distribution of temperature, B+, and Li+ concentrations in the subsurface. To capture
stratigraphic uncertainties, the model has nine layers with uncertain permeabilities (Table 3.5.1). Also
uncertain are the heat influx at the bottom and the thermal gradient. These simulations are slow and
computationally expensive. Using such models, making model diagnostic analyses such as calibration
against data, uncertainty quantification, sensitivity evaluation, and decision-support analyses are
challenging because they require numerous model runs.

To reduce the computational time
and to be able to perform the
above-mentioned analyses, we have
developed a neural network-based surrogate
model as a faster alternative to the THC
model. The ML model is using a multi-layer
perceptron (MLP) based neural network84.
The MLP network has three layers because
which have been demonstrated to be
sufficient to capture the underlying data and
physics complexity. The optimal MLP
hyperparameters. (e.g., activation function,
loss function, number of layers, learning
rates) are estimated through hyperparameter
tuning85. To train, test, validate the ML
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model, we generated 10,000 input parameter realizations
using Markov Chain Monte Carlo with the delayed
rejection adaptive Metropolis sampling technique86, and
executed our THC model to predict corresponding
temperature, Li+, and B+ concentrations. The
realizations are generated by varying the 11 model
inputs in Table 3.5.1. More uncertain parameters will be
included during the next project phase.

This ML work is ongoing, and the results will
be ready soon. The developed ML surrogate model
predicts temperature, Li+, and B+ concentrations much
faster than numerical simulations (in order of
milliseconds). After the ML model is finalized, we will
be used for (1) calibration against observed SWNM
data, and (2) quantification of the SWNM uncertainties
in permeabilities, heat flux, and thermal gradients.
Data-acquisition optimizations, sensitivity (local and
global) evaluations, and decision-support investigations
related to SWNM geothermal exploration and
production will be performed as well.

4 Conclusions
Geothermal exploration and production challenges come from the fact that various processes and
parameters impacting geothermal conditions are poorly understood. Diverse datasets are available that can
be applied to characterize subsurface geothermal conditions (public and proprietary; satellite, airborne
surveys, vegetation/water sampling, geological, geophysical, etc.). However, how exactly all these
datasets can be applied for geothermal exploration is poorly understood due to an imperfect understanding
of how physical processes impacting subsurface geothermal conditions are represented in these
observations. As demonstrated in our report, our novel GeoThermalCloud technology provides a solution
to address these challenges.

Our project has successfully developed, tested, demonstrated, and validated a novel framework
for geothermal data processing and machine learning (ML) called GeoThermalCloud. To address the
challenges and risks associated with geothermal exploration and production, GeoThermalCloud brings
novel computational methods and tools that can (1) analyze large field datasets, (2) assimilate model
simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning (between
sites with different exploratory levels), (5) extract hidden geothermal signatures in the field and
simulation data, (6) label geothermal resources and processes, (7) identify high-value data acquisition
targets, and (8) guide geothermal exploration and production by selecting optimal exploration, production,
and drilling strategies. It is important to note that the capability to process sparse datasets is critical for
geothermal exploration; this feature is generally absent in traditional machine learning methods. This
report demonstrates the applicability of our novel ML methods within GeoThermalCloud to process and
analyze geothermal information. All the project goals, milestones, deliverables, and go/no-go decision
points outlined in the original Phase 1 proposal have been successfully achieved.

GeoThermalCloud is a flexible open-source cloud-based ML framework for geothermal
exploration. GeoThermalCloud will also allow for the treatment of both public and proprietary datasets (a
proposed task under Phase 2 of our project). GeoThermalCloud framework also includes a series of
advanced pre-processing, post-processing, and visualization tools which tremendously simplify its
application for real-world problems. These tools make the ML results understandable and visible even for
non-experts. ML and subject-matter expertise are not a critical requirement to use our ML framework.
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ML tools in GeoThermalCloud are based on a series of novel LANL-developed patented ML
tools called SmartTensors (https://github.com/SmartTensors). SmartTensors have already been applied to
solve a wide range of real-world problems (from COVID-1912 to wildfires; http://tenosrs.lanl.gov).
SmartTensors has been recently nominated for an R&D 100 award. SmartTensors is written in Julia
programming language: a novel, fast (two orders of magnitude faster than Python, R, and MATLAB;
https://julialang.org) language specifically designed for technical computing and machine learning. Julia
programming language is actively used in numerous fields, including oil/gas exploration, financing,
climate modeling and pharmaceutical research. We have active collaborations with developers of the Julia
language. We will involve Julia Computing as a collaborator in Phase 2 of our project.

GeoThermalCloud, as well as our SmartTensors ML tools in general, are designed to be
computationally efficient and scalable. Our ML analyses can be executed to diverse computational
platforms: from handhelds and laptops to supercomputers and cloud frameworks. The ML tools are
designed to automatically and efficiently utilize available hardware accelerators such as GPUs (Graphics
Processing Units) and TPUs (Tensor Processing Units) and diverse computing platforms involving a large
number of compute nodes. SmartTensors framework has already been demonstrated to process tens of
TBs of data using DOE supercomputers13.

ML methods embedded in the GeoThermalCloud have already been extensively tested and
validated. In this report, as well as in a series of presentations and submitted research papers, we have
demonstrated that GeoThermalCloud can be applied to discover hidden geothermal signatures for a series
of diverse datasets and regions. Our work so far demonstrated the applicability of GeoThermalCloud to
process diverse multi-source, multi-scale, and multi-physics geothermal datasets for the following sites:
Southwest New Mexico, Brady, Nevada, Great Basin, West Texas, Tularosa Basin, New Mexico,
Tohatchi Springs, New Mexico, Hawaii, Utah FORGE, and EGS Collab. In addition, two synthetic
datasets were generated using GeoDT and PFLOTRAN. They are applied to (1) validate our ML methods,
(2) demonstrate how our ML tools can fuse model outputs in the geothermal analyses, (3) identify
high-value data acquisition strategies, and (4) estimate exploration/production costs and risks. These two
synthetic-data analysis efforts demonstrate how our ML methods can be applied in tandem with
forward-looking multi-physics models to address questions related to value-added data acquisition
strategies and to reduce exploratory and development costs. For the Brady and Utah FORGE sites, our
ML characterization particularly focused on impact in-situ stress on geothermal production. For Utah
FORGE, prospectivity maps are generated and drilling locations are proposed for future geothermal field
exploration.

All the data and codes required to reproduce the ML results for SWNM, Brady, and Great Basin
studies presented in this report are available at the GDR (https://gdr.openei.org/submissions/1297) and at
the GeoThermalCloud GitHub repository (https://github.com/SmartTensors/GeoThermalCloud.jl). The
data and the codes for other problem analyses performed under this project will be available shortly on the
website as well.

5 Future Work
A series of tasks will be executed under proposed Phase 2 of our project that will further enhance the
GeoThermalCloud capabilities:
1. GeoThermalCloud will allow for the treatment of both public and proprietary datasets. This is an

essential feature considering the high sensitivities associated with the use of proprietary data in
general. Processing simultaneously public and proprietary datasets will tremendously increase the
quality and applicability of the obtained ML results. The work will be executed by Julia Computing; a
new collaborator in Phase 2 of our project. We have already active collaborations with Julia
Computing under several other projects. Julia Computing has already past experience in developing
computing systems, which deal with both public and proprietary datasets.
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2. GeoThermalCloud will be deployed at JuliaHub (https://juliahub.com). JuliaHub is maintained by
Julia Computing. JuliaHub will allow for simplified cloud deployment and executions of various
types of geothermal ML analyses available with GeoThermalCloud.

3. Our GeoThermalCloud framework already includes a series of advanced pre-processing,
post-processing, and visualization tools. These tools will be expanded to include GIS (Geographic
Information System) based visualization capabilities. GeoThermalCloud already includes the
open-source framework GMT (Generic Mapping Tools; https://www.soest.hawaii.edu/gmt).
Additional open-source GIS tools will be added in the future (e.g., QGIS, https://qgis.org).

4. ML methods and tools in our GeoThermalCloud framework will be further enhanced and validated to
extract geothermal information. Particular key areas for improvements include:
a. Physics-Informed ML (PIML): Development of PIML methods and tools specific for geothermal

exploration29,30. PIML methods have already been included in SmartTensors. However, they need
to be modified to address the challenges and needs related to geothermal resource exploration and
production.

b. Koopman theory: Develop efficient and optimized data-driven reduced order models87,88 using
recent advances in nonlinear dynamics89,90 and Koopman theory91–93 to model geothermal
resources based on limited observational data and hidden features94 discovered by our
unsupervised ML methods.

c. ML using limited and missing data: Here, we have demonstrated that our ML methods can
successfully process small datasets with data gaps. The capabilities of our ML methods to process
limited and missing data will be further enhanced incorporating PIML and Koopman theory. In
addition, we will also explore novel data augmentation techniques such as few-shot learning95 and
meta-learning96.

d. Transfer learning: Our ML methods have already been successfully applied for transfer
learning2,4. However, they will be further enhanced by incorporating PIML methods and by
advancing our unsupervised ML methods based on matrix/tensor factorization.

5. We will further validate our novel LANL-developed simulator GeoDT. This validation process
enables us to apply GeoDT to study a wider range of geothermal production scenarios to identify
crucial data needs for geothermal energy extraction. Further investigation of the ML extracted
geothermal signatures is also required to more clearly understand the implications of physical site
attributes for geothermal exploration and production.

6. Looker tool (https://looker.com) for improved understanding of data analytics and ML results has
been recently added in the Google Cloud Platform toolbox. We will be working with the developers
of the Looker tool at Google to incorporate it into our GeoThermalCloud framework.

7. Add additional datasets for GeoThermalCloud analysis. This will include assimilation of satellite
data, GeoDAWN (Geoscience Data Acquisition for Western Nevada) dataset, physics simulation
outputs, and open-source geothermal datasets. We will also process jointly datasets that are available
in overlapping (e.g., Brady, Utah FORGE, GeoDAWN and Great Basin) and adjacent (e.g., SWNM,
Tularosa, Tohatchi) regions.

8. Our already accomplished work for the Brady and Utah FORGE sites focused on ML
characterization of impact in-situ stress on geothermal production. These analyses will be further
expanded under Phase 2 of our project.

9. The test and example problems in GeoThermalCloud can already be executed as Jupyter and Pluto
notebooks. The utilization of notebooks will be expanded to incorporate GIS and interactive
visualization tools. Interactive plots (using Plotly.js https://plotly.com/javascript) are already
implemented. Other interactive tools such as Dash (https://plotly.com/dash) and D3 (https://d3js.org)
will be added as well. This work will further facilitate the interpretation of ML results.

10. The data and codes required to reproduce all ML analyses will be available at the GDR
(https://gdr.openei.org/submissions/1297) and at the GeoThermalCloud GitHub repository
(https://github.com/SmartTensors/GeoThermalCloud.jl). The data and codes will be also available for
execution at JuliaHub (https://juliahub.com).
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